Sekilas Tentang Instrument In Chemistry

Rabu, 11 April 2012
Buat kamu-kamu yang mengaku berjiwa Chemistry, pastinya tau donk Mikroskop Elektron itu apa plus fungsinya. . . Okkee disini aku mau sharing sedikit tentang mikroskop electron, semoga bermanfaat yaahh :)

Mikroskop elektron adalah sebuah mikroskop yang mampu untuk melakukan pembesaran objek sampai 2 juta kali, yang menggunakan elektro statik dan elektro magnetik untuk mengontrol pencahayaan dan tampilan gambar serta memiliki kemampuan pembesaran objek serta resolusi yang jauh lebih bagus daripada mikroskop cahaya. Mikroskop elektron ini menggunakan jauh lebih banyak energi dan radiasi elektromagnetik yang lebih pendek dibandingkan mikroskop cahaya.
Fenomena elektron
Pada tahun 1920 ditemukan suatu fenomena di mana elektron yang dipercepat dalam suatu kolom [elektromagnet], dalam suasana hampa udara (vakum) berkarakter seperti cahaya, dengan panjang gelombang yang 100.000 kali lebih kecil dari cahaya. Selanjutnya ditemukan juga bahwa medan listrik dan medan magnet dapat berperan sebagai lensa dan cermin seperti pada lensa gelas dalam mikroskop cahaya.
Jenis-jenis mikroskop elektron
1.    SEM
Mikroskop pemindai elektron (SEM)
Mikroskop pemindai elektron (SEM) yang digunakan untuk studi detail arsitektur permukaan sel (atau struktur jasad renik lainnya), dan obyek diamati secara tiga dimensi.
Sejarah penemuan
Tidak diketahui secara persis siapa sebenarnya penemu Mikroskop pemindai elektron (Scanning Electron Microscope-SEM) ini. Publikasi pertama kali yang mendiskripsikan teori SEM dilakukan oleh fisikawan Jerman dR. Max Knoll pada 1935, meskipun fisikawan Jerman lainnya Dr. Manfred von Ardenne mengklaim dirinya telah melakukan penelitian suatu fenomena yang kemudian disebut SEM hingga tahun 1937. Mungkin karena itu, tidak satu pun dari keduanya mendapatkan hadiah nobel untuk penemuan itu.
Pada 1942 tiga orang ilmuwan Amerika yaitu Dr. Vladimir Kosma Zworykin, Dr. James Hillier, dan Dr. Snijder, benar-benar membangun sebuah mikroskop elektron metode pemindaian (SEM) dengan resolusi hingga 50 nm atau magnifikasi 8.000 kali. Sebagai perbandingan SEM modern sekarang ini mempunyai resolusi hingga 1 nm atau pembesaran 400.000 kali. Mikroskop elektron cara ini memfokuskan sinar elektron (electron beam) di permukaan obyek dan mengambil gambarnya dengan mendeteksi elektron yang muncul dari permukaan obyek.


Tentang SEM
Elektron memiliki resolusi yang lebih tinggi daripada cahaya. Cahaya hanya mampu mencapai 200nm sedangkan elektron bisa mencapai resolusi sampai 0,1 – 0,2 nm. Dibawah ini diberikan perbandingan hasil gambar mikroskop cahaya dengan elektron.


Disamping itu dengan menggunakan elektron kita juga bisa mendapatkan beberapa jenis pantulan yang berguna untuk keperluan karakterisasi. Jika elektron mengenai suatu benda maka akan timbul dua jenis pantulan yaitu pantulan elastis dan pantulan non elastis seperti pada gambar dibawah ini


Pada sebuah mikroskop elektron (SEM) terdapat beberapa peralatan utama antara lain:
1. Pistol elektron, biasanya berupa filamen yang terbuat dari unsur yang mudah melepas elektron misal tungsten.
2. Lensa untuk elektron, berupa lensa magnetis karena elektron yang bermuatan negatif dapat dibelokkan oleh medan magnet.
3. Sistem vakum, karena elektron sangat kecil dan ringan maka jika ada molekul udara yang lain elektron yang berjalan menuju sasaran akan terpencar oleh tumbukan sebelum mengenai sasaran sehingga menghilangkan molekul udara menjadi sangat penting.

Cara kerja
Cara terbentuknya gambar pada SEM berbeda dengan apa yang terjadi pada mikroskop optic dan TEM. Pada SEM, gambar dibuat berdasarkan deteksi elektron baru (elektron sekunder) atau elektron pantul yang muncul dari permukaan sampel ketika permukaan sampel tersebut dipindai dengan sinar elektron. Elektron sekunder atau elektron pantul yang terdeteksi selanjutnya diperkuat sinyalnya, kemudian besar amplitudonya ditampilkan dalam gradasi gelap-terang pada layar monitor CRT (cathode ray tube). Di layar CRT inilah gambar struktur obyek yang sudah diperbesar bisa dilihat. Pada proses operasinya, SEM tidak memerlukan sampel yang ditipiskan, sehingga bisa digunakan untuk melihat obyek dari sudut pandang 3 dimensi.

Tetapi sumber lain menyebutkan prinsip kerja SEM adalah sebagai berikut :
1. Sebuah pistol elektron memproduksi sinar elektron dan dipercepat dengan anoda.
2. Lensa magnetik memfokuskan elektron menuju ke sampel.
3. Sinar elektron yang terfokus memindai (scan) keseluruhan sampel dengan diarahkan oleh koil pemindai.
4. Ketika elektron mengenai sampel maka sampel akan mengeluarkan elektron baru yang akan diterima oleh detektor dan dikirim ke monitor (CRT).
Secara lengkap skema SEM dijelaskan oleh gambar dibawah ini:


Kelemahan dari teknik SEM antara lain:
1. Memerlukan kondisi vakum
2. Hanya menganalisa permukaan
3. Resolusi lebih rendah dari TEM. Hal ini di sebabkan oleh panjang gelombang de Broglie yang memiliki electron lebih pendekdek daripada gelombang optic. Karena makin kecil panjang gelombang yang digunakan maka makin tinggi resolusi mikroskop
4. Sampel harus bahan yang konduktif, jika tidak konduktor maka perlu dilapis logam seperti emas


2.    TEM

Mikroskop transmisi elektron (TEM)
Mikroskop transmisi elektron (Transmission electron microscope-TEM)adalah sebuah mikroskop elektron yang cara kerjanya mirip dengan cara kerja proyektor slide, di mana elektron ditembuskan ke dalam obyek pengamatan dan pengamat mengamati hasil tembusannya pada layar.

Sejarah penemuan
Seorang ilmuwan dari universitas Berlin yaitu Dr. Ernst Ruska menggabungkan penemuan ini dan membangun mikroskop transmisi elektron (TEM) yang pertama pada tahun 1931. Untuk hasil karyanya ini maka dunia ilmu pengetahuan menganugerahinya hadiah Penghargaan Nobel dalam fisika pada tahun 1986. Mikroskop yang pertama kali diciptakannya adalah dengan menggunakan dua lensa medan magnet, namun tiga tahun kemudian ia menyempurnakan karyanya tersebut dengan menambahkan lensa ketiga dan mendemonstrasikan kinerjanya yang menghasilkan resolusi hingga 100 nanometer (nm) (dua kali lebih baik dari mikroskop cahaya pada masa itu).

Cara kerja
Mikroskop transmisi eletron saat ini telah mengalami peningkatan kinerja hingga mampu menghasilkan resolusi hingga 0,1 nm (atau 1 angstrom) atau sama dengan pembesaran sampai satu juta kali. Meskipun banyak bidang-bidang ilmu pengetahuan yang berkembang pesat dengan bantuan mikroskop transmisi elektron ini.
Adanya persyaratan bahwa "obyek pengamatan harus setipis mungkin" ini kembali membuat sebagian peneliti tidak terpuaskan, terutama yang memiliki obyek yang tidak dapat dengan serta merta dipertipis. Karena itu pengembangan metode baru mikroskop elektron terus dilakukan.
Perbedaan mendasar dari TEM dan SEM adalah pada cara bagaimana elektron yang ditembakkan oleh pistol elektron mengenai sampel. Pada TEM, sampel yang disiapkan sangat tipis sehingga elektron dapat menembusnya kemudian hasil dari tembusan elektron tersebut yang diolah menjadi gambar. Sedangkan pada SEM sampel tidak ditembus oleh elektron sehingga hanya pendaran hasil dari tumbukan elektron dengan sampel yang ditangkap oleh detektor dan diolah. Skema perbandingan kedua alat ini disajikan oleh gambar dibawah ini.

 
Prinsip kerja dari TEM secara singkat adalah sinar elektron mengiluminasi spesimen dan menghasilkan sebuah gambar diatas layar pospor. Gambar dilihat sebagai sebuah proyeksi dari spesimen. Skema dari TEM lebih detil dapat dilihat pada gambar berikut ini.

 
Sedangkan sinyal utama yang dapat dihasilkan oleh TEM dideskripsikan pada gambar berikut:

 
Sinyal utama yang dapat ditangkap atau dihasilkan dari TEM cukup banyak antara lain:
1.      Diffraction Contrast
Dipakai untuk mengkarakterisasi kristal biasa digunakan untuk menganalisa defek, endapan, ukuran butiran dan distribusinya.
2.      Phase Contrast
Dipakai untuk menganalisa kristalin material (defek, endapan, struktur interfasa, pertumbuhan kristal)
3.      Mass/Thickness Contrast
Dipakai untuk karakterisasi bahan amorf berpori, polimer, material lunak (biologis)
4.      Electron Diffraction
5.      Characteristic X-ray (EDS)
6.      Electron Energy Loss Spectroscopy (EELS + EFTEM)
7.      Scanning Transmission Electron Microscopy (STEM)

Kelebihan dari analisa menggunakan TEM adalah:
1.  Resolusi Superior 0.1~0.2 nm, lebih besar dari SEM (1~3 nm)
2. Mampu mendapatkan informasi komposisi dan kristalografi dari bahan uji dengan resolusi tinggi
3.  Memungkinkan untuk mendapatkan berbagai signal dari satu lokasi yang sama.
                    
Sedangkan kelemahannya adalah:
1. Hanya meneliti area yang sangat kecil dari sampel.
2. Perlakuan awal dari sampel cukup rumit sampai bisa mendapatkan gambar yang baik.
3. Elektron dapat merusak atau meninggalkan jejak pada sampel yang diuji.

3.   BET
METODE BET (BRUNAEUR-EMMET-TELLER)
Metode ini menganggap bahwa molekul padatan yang paling atas berada pada kesetimbangan dinamis. Ini berarti jika permukaan hanya dilapisi oleh satu molekul saja, maka molekul-molekul gas ini berada dalam kesetimbangan dalam fase uap padatan. Jika terdapat dua atau lebih lapisan, maka lapisan teratas berada pada kesetimbangan dalam fase uap padatan. Bentuk isoterm tergantung pada macam gas adsorbat,, sifat adsorben dan sturktur pori. Gejala yang diamati pada adsorpsi isoterm berupa adsorpsi lapisan molekul tunggal, adsorpsi lapisan molekul ganda dan kondensasi dalam kapiler. Persamaan BET dapat ditulis sebagai berikut :


0 komentar:

Posting Komentar